Total No	o. of Questions : 8] SEAT No. :	
PA-1 :	181 [Total No. of Pages : 3	
	[5925]-203	
	S.E. (Civil)	
	FLUID MECHANICS	
	(2019 Pattern) (Semester-III) (201003)	
Time : 2	2½ Hours] [Max. Marks : 70	
Instructi	ions to the candidates:	
1)	Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.	
2)	Answer to the all questions should be written in single answer-book.	
3)	Neat diagrams must be drawn wherever necessary.	
4)	Figures to the right indicate full marks.	
5)	Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator (non programmable) and steam tables is allowed.	
6)	Assume suitable data, if necessary.	
0)	rissame saturite data, if necessary.	
Q1) a)	A 1:15 model of a flying boat is towed though water. The prototype is	
- / /	moving in seawater of density 1025kg/mat velocity of 21 m/s. Find the	1
	corresponding speed of the model. Also, determine the resistance due t	
	waves on model if the resistance due to waves of the prototype is 610N	ſ.
b)	Explain the phenomenon of Boundary Layer Separation and Methods to	\cap
U)	control to it. [8]	J
	dow OR	
Q2) a)	The resisting force R of a supersonic plane during the flight can	b
- / /	considered as dependent upon the length of the aircaft <i>l</i> , velocity V, air	
	viscosity μ , air density ρ , and bulk modulus of air K. Express th	
	functional relationship between these variables and the resisting force	

e functional relationship between these variables and the resisting force. Use Buckingham's ☐ Method [9]

b) Explain with the help of neat sketch [8]

- i) Laminar boundary layer
- Turbulent boundary layer ii)
- Laminar Sub-layer. iii)

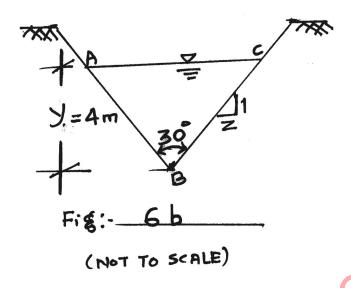
P.T.O.

- Q3) a) A pipe of 110 mm diameter is carrying water. If the velocities at the pipe center and 30 mm from the pipe centre are 2.1 m/s and 1.6 m/s respectively and flow in the pipe is turbulent. Calculate the shear friction velocity and wall shearing stress.[9]
 - b) Derive with usual notations the following Darcy-Weisbach equation for the loss of energy due to friction. [8]

$$h_f = \frac{4.f.LV^2}{2.g.D}$$

OR

- **Q4)** a) A fluid of viscosity 8 poise and specific gravity 1.2 is flowing through a circular pipe of diameter 100 mm. The maximum shear stress at the pipe wall is 211 N/m³. Find: [9]
 - i) The pressure gradient,
 - ii) The average velocity, and
 - iii) Reynolds number of the flow
 - b) Explain the procedure of Hardy Cross method for the analysis of pipe network. [8]
- **Q5)** a) The discharge of water through a rectangular channel of width 8 m, is 15.5 m³/s when the tepth of flow of water is 1.25 m. Calculate: [10]
 - i) Discharge per unit width
 - ii) Velocity of flow
 - iii) Specific energy of the flowing water
 - iv) Critical depth
 - v) Critical velocity and
 - vi) Value of minimum specific energy.
 - b) Derive with usual notations the basic governing "energy equation" of channel flow. [8]


OR

Q6) a) A trapezoidal channel has side slope of 3 horizontal to 4 vertical and slope of its bed is 1 in 2000. Determine the optimum dimensions for the channel sections and show it with neat sketch, if it is carry water at 0.55 m³/s. Take Chezy's constant as 80. [9]

[5925]-203

ii) Find the rate of flow of water through a V-shaped channel as shown in Figure 6 b. Take the value of C=56 and slope of the bed 1 in 2000.

[4]

- **Q7)** a) A metallic ball of diameter 2×10 ⁻³ m drops in a fluid of sp. gr. 0.96 and viscosity 15 poise. The density of the metallic ball is 12000 kg/m³. Find:
 - i) The drag force exerted by fluid on metallic ball,
 - ii) The pressure drag and skin friction drag, and
 - iii) The terminal velocity of ball in fluid.
 - b) Explain Classification of channel bottom slopes with neat sketches.[8] OR
- **Q8)** a) A rectangular channel is 20 m wide and carries a discharge of 65 ⅓s. It is laid at a stope of 0.0001. At a certain section along the channel length, the depth of flow is 2m. How far U/S or D/S will the depth be 2.6m? Take n=0.02. Use direct step method with three steps. Consider the depth increment in the interval of 0.1m. Classify and sketch the profile. **[10]**
 - b) A flat plate 1.5 m×1.5 m moves at 51 m/hr in stationary air of density 1.16 kg/m³. If the co-efficient of drag and lift are 0.16 and 0.76 respectively, determine: [8]
 - i) The lift force,
 - ii) The drag force
 - iii) The resultant force, and
 - iv) The power required to keep the plate in motion.

